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A B S T R A C T  

We study equimultiple deformations of isolated hypersurface singularities, 
introduce a blow-up equivalence of singular points, which is intermedi- 
ate between topological and analytic ones, and give numerical sufficient 
conditions for the blow-up versality of the equimultiple deformation of a 
singularity or multisingularity induced by the space of algebraic hyper- 
surfaces of a given degree. For singular points, which become Newton 
nondegenerate after one blowing up, we prove that the space of algebraic 
hypersurfaces of a given degree induces all the equimultiple deformations 
(up to the blow-up equivalence) which are stable with respect to removing 
monomials lying above the Newton diagrams. This is a generalization of 
a theorem by B. Chevallier. 

I n t r o d u c t i o n  

This  p a p e r  is devoted  to  de format ions  of a specia l  k ind  for i sola ted  hypersurface  

s ingular i t ies  over the  real  or  complex  field. 

A classical  p rob lem is to descr ibe  wha t  happens  wi th  s ingular i t ies  of an  alge- 

bra ic  hypersurface  when vary ing  in the  space of  hypersurfaces  of  a given degree 

(or in ano the r  in teres t ing  class).  The  versa l i ty  of a de fo rmat ion  guarantees  t ha t  

i t  conta ins  al l  possible  de format ions  in the  considered class. The  case of  a lgebra ic  
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curves has been studied intensively; we refer the reader to the survey [13] for an 
up-to-date account and bibliography. Few results have been obtained for higher 

dimensions [6, 7, 8, 22]. However, the ordinary versality (i.e., with respect to 
the group of all diffeomorphisms) appears to be a rather restrictive condition, 
which does not hold for a wide range of the hypersurface spaces (see examples in 

[8, 11]). 

We approach this main problem from two sides. First, we study versality of 
deformations with respect to different equivalences, i.e., defined by groups of dif- 
feomorphisms or homeomorphisms of certain types. We consider equimult iple  

deformations,  i.e., deformations in the class of the germs of a given multiplicity. 

For some class of singular points (called N D T  - -  non-degenera te  along tan-  

gents), we define b low-up equivalence, which is a topological equivalence in 

the original space and local analytic equivalence in the blown-up space (section 
1.1.5). We study equimultiple deformations of NDT singular points, which are 

versal with respect to the blow-up equivalence. Such versality is stronger than 
versality up to topological equivalence, but, on the other hand, it can be induced 

by the spaces of hypersurfaces of bounded degrees (see Theorems 1, 2, 3 and 
Corollary 2). We show that equimultiple blow-up versal deformations of NDT 

singularity or multisingularity (i.e., a collection of singularities) are realizable in 
the space of algebraic hypersurfaces satisfying certain numerical conditions. 

Another point of view on the versality problem arises from the Viro method [24, 
25, 26, 18] and its modifications [20, 21] which produce certain one-parametric 
deformations of Newton nondegenerate singular points ("lower deformations" in 
terms of [21]). B. Chevallier [4] introduced NNDT singularities (Newton non- 
degenerate along tangents), which generalize Newton nondegenerate ones, and 
defined similar one-parametric deformations. An important advantage of these 
constructions is that they do not increase the degree of a given algebraic hy- 
persurfaces. Another useful property is that the hypersurfaces in the Viro-type 
deformations admit an explicit topological description, namely, they are topo- 

logically glued out of pieces of sample algebraic hypersurfaces. Keeping these 

advantages, we extend the range of realizable deformations for NNDT singular 

points so that the whole family of these deformation possesses the following ver- 

sality property: it contains all the (equimultiple) deformations which are stable, 

in a sense, with respect to removing monomials lying above the Newton diagrams 
(section 2.2). The meaning of stability is specified in the form of S-transversality 

(see section 2.3.3), expressed in terms of the geometry of equisingular families 
of hypersurfaces. Theorem 4 assures that all S-transversal deformations are in- 
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duced by the space of hypersurfaces of the given degree, generalizing thereby 

Chevallier's theorem [4]. 

ACKNOWLEDGEMENT: We should like to thank the referee for many remarks 

and suggestions which allowed us to improve the presentation. 

1. Deformations of  isolated singular points 

1.1 BASIC DEFINITIONS AND NOTATIONS. Throughout the paper we always 

assume that  the objects under consideration (functions, hypersurfaces, diffeo- 

morphisms) are defined over C, and the real case means that  all the data  are 

equivariant, i.e., invariant with respect to the complex conjugation. Moreover, 

all the statements formulated for the complex case are valid for the real case as 

well if one appends the equivariance condition. 

I. 1.1 Versal deformations. Versality of a deformation can be defined in various 

ways. We shall use the following definition. 

Let M be a topological space. A deformation of an element f E M is a 

continuous map F : (A, 0) -+ (M, f ) ,  where A is a finite-dimensional linear C- 

space, the base of the deformation. Let M = [.J~sA M~ be a subdivision into 

disjoint subsets M~, a E .A. A deformation F of f E M is called ve r s a l  w i t h  

respect to the given subdivision of  M, if there exists a neighborhood U of 

f in M such that  the image of F intersects any subset M~ with M~ N U ~ 0. 

A classical example is the following. Let M be an analytic manifold over C and 

G Lie group acting on M. A deformation of an element f C M is an analytic 

embedding germ F : (A, 0) -~ (M, f ) ,  where A is a finite-dimensional linear C- 

space. The manifold M is decomposed into the orbits of the group action, and 

a deformation F of f is called v e r s a l  (G-versa l )  if the image of F intersects all 

orbits in a neighborhood of f .  

I t  is well-known [17] that  if the G-orbit Gf of the element f E M is smooth 

then a deformation F:  (C ~, 0) --+ (M, f )  is versal, provided 

OF , OF ~=o 

span in TIM a subspace TfF transversal to the tangent space T(Gf) I to the 

orbit (here AI , - . - ,  A~ are coordinates in A = C~). 

Below we consider deformations of isolated hypersurface singular points versal 

with respect to some group actions and with respect to some other equivalence 

relations in the main space. 
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1.1.2 Singularities of hypersurfaces, ideals and zero-dimensional schemes. Let 

f :  (C ~, x) -+ (C, 0) be an analytic function germ having an isolated critical point 

at x. The group Diff ° (C n) of analytic diffeomorphisms of (C n, x), preserving the 

point x, acts on the algebra of the analytic function germs, 

Oc. , ,  = {g: (c",  x) - ,  (c, 0)}. 

It is well-known [16, 23] that  the power m k of the maximal ideal mx C Oc-,x, 

for a sufficiently large k, is contained in the orbit of f with respect to the action 

of Diff ° (C n). Thus, the study of versal deformations with respect to the action of 

G being Diff°(C n) or a larger group, is reduced to the case of a finite-dimensional 
m k manifold Oct ,x /  x and the Lie group 

Besides the group Diff ° (C ~) defining an equivalence of function germs at the 

fixed critical point x, we shall consider the groups: 

• Diffx(C n) -- Tran(C n) ~< Diff°(Cn), the semidirect product with a germ of 

the group of translations in C n, acting as (T~).g = goTo~, T • Tran(Cn), 

(I) • Diff°(C~), g • M, and defining an equivalence of singularities of 

functions in a neighborhood of f • M; 

• C* x Diff ° (C ~) acting as (a¢).9 = ago ~ and defining an equivalence of 

hypersurface germs with the fixed singular point x; 

• C* x Diff,(C ~) defining an equivalence of hypersurface germs in a neigh- 

borhood of x in C ~ . 

Germs of the orbits of f in Oc~,~/m k under the action of the groups 

C* × Diff,(C~), C* x Diff°(C ~) are smooth, and their tangent spaces are the 

ideals 

( (of 
Of Of ~, I ° ( f ) = ( f ) + m ~  Oxl Oxn I( f )  = f,  O Z l , . . .  , OZn / ' ' ' ' '  ' 

respectively. These ideals define zero-dimensional schemes at x ([5]) which we 

denote as xea(f) ,  X~a'°(f), respectively. The scheme degrees are deg X~a(f) = 
v(f),  deg X~ ' ° ( f )  = r ( f )  + n, where r ( f )  is the Tjurina number. 

1.1.3 Equimultiple versal deformations. In the above notation, we define the 

multiplicity of the point x for the function f ,  or for the hypersurface {f  = 0} as 

m = multx(f)  = max{l :  f • m~}, 

or, equivalently, 
• m - - 1  jet  (f)  = 0, jet (f) # 0. 
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Clearly, the multiplicity is an analytic invariant. The set of functions close to f 

with multiplicity ra at x form a germ at f of the ideal m~; the set of functions 

close to f with a singular point in a neighborhood of x having multiplicity m 

form a germ jk4~ of a smooth subvariety of Oc- ,x /m k. 
A deformation of f inside mx m (resp., J~l~) is called f i x e d - e q u i m u l t i p l e  

(resp., equ imul t i p l e ) .  The group C* × Diffx(C ~) acts in J~4~, and the group 

(2* x Diff°(C ") acts in m m, and we respectively define versal deformation: 

• a finite-parametric deformation of the singular point x of the hypersurface 

germ {f  = 0} inside A4~ m is called versa l  equ imu l t i p l e ,  if it crosses the 

C* × Diffx(C~)-orbits of all germs in M ~  sufficiently close to {f  = 0}, 

• a finite-parametric deformation of the singular point x of the hypersurface 

= m is called versa l  f i xed -equ imu l t i p l e ,  if it crosses germ {f  0} inside m z 

the C* x Diff°(C~)-orbits of all germs in m m sufficiently close to {f  = 0}. 

As mentioned in section 1.1.1, according to [17] the following (infinitesimal) 

criteria suffice for the versality of deformations: 

M '*  • an embedding F: (A, 0) --+ ( x ,  f )  satisfying the condition that TIF is 

transverse to I( f)  in T I (Mm), is a versal equimultiple deformation of the 

singular point x of the hypersurface germ {f  = 0}; 
rll rn • an embedding F: (A, 0) -+ ( , ,  f )  satisfying the condition that  TIF is 

transverse to I°(f) in rn~, is a versal fixed-equimultiple deformation of the 

singular point x of the hypersurface germ {f  = 0}. 

In particular, one can obtain a versal fixed-equimultiple deformation of the 

germ f in the form F(,k) = f + ~-~=1 )~iFi, where F 1 , . . . ,  Fs are the monomials 

of degree >__ m of a monomial basis of Oc, ,~/I°(f). 

1.1.4 Boundary singularities. We recall some definitions and facts concerning 

boundary singularities (see [19]). 

A pair (g, H)  consisting of an analytic function germ g and a smooth hyper- 

surface germ H at the same point x C C" is called an H-boundary function 

germ. Correspondingly a pair (G,H) ,  where G = {g = 0}, is called an H- 

boundary hypersurface germ. The point x is an isolated H-boundary singular 

point for (G, H)  if x is an isolated critical point both for the function germ g and 

for the restriction to the boundary, glH. Equivalence of H-boundary singular 

points (in a neighborhood of x) is defined by the action of the group (2* × 

Diffx(C" IH) in Oc. ,~, where Oiffx(C ~ IH) C Diff~(C ~) is a subgroup, consisting 

of the diffeomorphism germs which take H to itself. 

For an isolated H-boundary singular point x of (G,H), there exists k such 

k is contained in the orbit of 9 under the (2* x Diffx(C ~ IH) action, hence that  m x 



298 I. SCHERBACK AND E. SHUSTIN Isr. J. Math. 

the study of versal deformations of H-boundary singular point x of (G, H) is 
reduced to the finite-dimensional case of the manifold Oc,~ ,x/ra k and the group 

(2* × Diff~(CniU)/m~ acting on it. 

Without loss of generality assume that H is the hyperplane x~ = 0. Then the 

orbit of g under the C* × Diffx(C '~ IH)-action is smooth and its tangent space at 

g is the ideal (see [19]) 

(1) I(glH) = g' Oxl'  " ' "  Ox~-l '  xn , 

so, by [17], a deformation F: (A, 0) --+ (Oct,x, g) is a versal  d e f o r m a t i o n  of  
t h e  H - b o u n d a r y  s ingular  po in t  x of  (G, H) if T f F  is transverse to I(g, H) 

in Oc~ ,~. Denote by X ~  H the zero-dimensional scheme in C ~ concentrated at x 

and defined by the ideal I(gIH ). 

1.1.5 NDT hypersurface germs and blow-up equivalence. Let W = {f  -- 0} 
be a hypersurface germ at an isolated singular point x C C ~. Consider the 

blowing-up r :  E --+ CP n D C ~ of the point x. Denote by W* the proper 

transform of W, by E the exceptional divisor, E = r - l ( x ) .  The germ W is called 

n o n - d e g e n e r a t e  a long t a n g e n t s  (briefly, NDT) ,  if the set Sing(W*lE ) = 

Sing(W*) (J Sing(W* M E) is finite and is contained in W* M E. This implies, in 

particular, that W* meets E transversally at any point z E W*NE \ Sing(W* IE). 

We notice that any point z C Sing(W*iE) corresponds to a certain straight line 

Lz C C ~ through x, tangent to W. 
For example, any isolated singular point of a planar curve is NDT. Note also 

that any element f '  E m m, which is sufficiently close to f ,  has an NDT singularity 

a t x .  
Clearly, the NDT-property of a singular point is invariant with respect to the 

C* × Diff ° (C ~)-action. An element ~ • C* × Diff ° (C ~) defines a diffeomorphism 

~* of a neighborhood of E in ~, which satisfies ~* ]E • Ant(E) and transforms 

a point x* • Sing(W) into an equivalent E-boundary singular point. 

We shall define the b low-up  equivalence  of NDT singular points in the fol- 

lowing way. Two NDT singular points x and x' of hypersurface germs W, W' C 

are b low-up  equivalent ,  (W, x) ~ (W', x'), if, in the above notation, there 

exists a C~-diffeomorphism of a neighborhood of the exceptional divisor E to a 

neighborhood of the exceptional divisor E' ,  which takes E onto E' ,  establishes 

one-to-one correspondence between Sing(W*iE ) and Sing(W'*iE'), and is ana- 

lytic in a neighborhood of Sing(W* IE) in E (thus, defines an analytic equivalence 

between E-boundary singular points in Sing(W*iE) and E'-boundary singular 

points in Sing(W'* IE'), respectively). 
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The blow-up equivalence of NDT singularities lies between the analytic and 

topological equivalence: the diffeomorphism ~ drops down to C ~ as a bi-Lipschitz 

homeomorphism of neighborhoods of x and x' .  For example, ordinary singular 

points of the same multiplicity m -- mul tx(f )  = multi ,  ( f ' ) ,  such that  the lower 

homogeneous form of f and f '  at x and x' ,  respectively, has no critical points in 

C ~ \ { 0 ) ,  are both topologically and blow-up equivalent, but not analytically if 

n = 2, m _> 4, or n > 3, m > 3. 

Example 1: Le t  n _> 3, and  f ( X l , . - .  ,Xn) = fm(Xl , . . .  ,Xn) -~ fm+l(Xl , . . .  ,Xn) ,  

where fm and fm+l are homogeneous polynomials of degrees m and m + 1, 

respectively. The equation fm -= 0 defines a hypersurface in the projective space 

CP  ~-1. Assume that  the hypersurface {f,~ = 0} C CP  '~-I has only isolated 

singular points, which we denote as Z l , . . . ,  zr. Suppose also that  fm+l is generic. 

Under these assumptions, the hypersurface W -- { f  -- 0) has an NDT singularity 

at the origin. Indeed, the blow-up W* of W is nonsingular, and Sing(W* IE) =- 

{ z l , . . . ,  zr} is just the non-transverse intersection locus of W* and E.  The germ 

at f of the blow-up equivalence s t ra tum can be described as 

. ,  ~mq-1 /m(Xl , . .  xn) T fm+l (X l , . . . , xn ) -b  x , 

where a m-form ]m defines in CP n-1 a hypersurface in a germ at {fk -- O} of 

the equisingular s t ra tum in the space of hypersurfaces of degree m, and ~m+l  is 

a germ of the linear space m m + l .  

1.1.6 Blow-up versal deformations. In the above notation, we define a ( f ixed)  

b l o w - u p  ve r s a l  d e f o r m a t i o n  (briefly, ( f ixed)  B U V  d e f o r m a t i o n )  of an NDT 

singular point x of a hypersurface W as a (fixed) equimultiple deformation, which 

meets the blow-up equivalence classes for all f~ E A4 m (respectively, f~ E m m~ * X / '  
which are sufficiently close to f .  

This versality can be described via blowing-up 7r: E -+ C ~ of the point x. Any 

m is lifted upon E as a function g o 7r in a neighborhood of E.  For any g C m x  
x* C Sing(W* [E) the germ of g o Ir at x* is divisible by the germ Exm. C (92,x*, 

where Ex* = 0 is an irreducible equation of E in a neighborhood of x*. Put  

fit m gx* = (g o 7c)/E~'~.. Then a fixed-equimultiple deformation F: (A, 0) -+ ( x ,  f )  

is a fixed BUV deformation, if, for any point x* C Sing(W*IE ), the family 

Fx* : (A, 0) -+ O~,x. is a versal deformation of the E-boundary  singular point x* 

of W*. 

* Here 2~4~ is defined as in 1.1.3. 
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Since the analytic equivalence refines the blow-up equivalence, any versal 
(fixed) equimultiple deformation of an NDT singular point is (fixed) BUV as 

well. 

Remark 1: We should point out a difference between the (fixed) blow-up ver- 

sality and (fixed) equimultiple versality. Namely, the (fixed) blow-up versality in 

general does not reduce to an infinitesimal versality in the sense of [17], i.e., to the 

transversality of the intersection of a deformation and the equivalence stratum. 

The reason is that  the blow-up equivalence stratum is not necessarily smooth, 

which we demonstrate in an example below. Next we provide a sufficient condi- 

tion for the smoothness of the blow-up equivalence stratum and for the blow-up 

versality of an equimultiple deformation. 

In the above notation, define ideals 

I~dt'O(f) = {g e ram: gx" e I(f~*lE ) for all x* C Sing(W*]E)}, 

malt(f) = mdt'°(Y) + O x l ' "  o z .  / 

The ideals ingt,o(f), ind,( f)  define zero-dimensional schemes X ndt'°, X~ d~ C (g", 

respectively. In fact, X~ dr'° is the blow-down of the union of the schemes Xe~.lE, 

x* E Sing(W* IE), which we denote as .~dt,0. 

PROPOSITION 1: (1)  Let L = 7r-l(L) C E be the preimage of a hyperplane 
L C CP n , which does not pass through x. If, for some k > m, 

(2) ht(E, ,]'~gd,,o/2 ® O~(kL - mE))  = O, 

m is smooth and has then the germ at f of the blow-up equivalence stratum in m x 

codimension 

(3) deg X~dt'° = deg Xndt'° - ( m + n - 1 )  

11l m (2) Under condition (2), a deformation F: (A, O) --+ ( x ,  f )  is fixed BUV i f T I F  
m j ~ m  is transverse to Indt'O(f) in rn x . Similarly, a deformation F: (A, O) ~ ( 2 ,  f )  

is BUV f f T s F  is transverse to Indt(f) in T f ( j~m) .  

Proof: (1) The singularity at x defined by f is analytically equivalent to that 

defined by the (it + 1)-jet of f ,  where it is the Milnor number (see [23]). Hence 

it is sufficient to verify (2) only for k = it + 1. Then the blow-up equivalence 
stratum in m~ can be reduced mod m~ +2. The blowing-up 7r: E ~ CP n takes 
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ra~ /m~ into the family in the linear sys- the blow-up equivalence stratum in m t,+2 

tern I O ~ ( k L -  mE)I, consisting of hypersurfaces with E-boundary singularities 

analytically equivalent to these of W*. By the basic deformation theory (see, for 

example, [90, relation (2) with k = # + 1 suffices for the smoothness and the 

expected codimension (3) of the latter E-boundary equisingular stratum. 
(2) The condition of the transversal intersection of T:F and Indt'°(f) in m~ 

lifts by r to the transversality of the intersection of the spaces TI.F* and 

H°(E, J~2d~.Ol~ ® O~(kL - mE)) in H°(E, O~(kL - mE)) for some k, which is 
the infinitesimal sufficient criterion for the joint versality of the deformation F* 

with respect to all E-boundary singular points X* E Sing(W* ]E). 

The second transversality condition reduces to the first one. | 

Coming back to Example 1, we can derive that the smoothness of the blow-up 

equivalence stratum at f reduces to the smoothness of the equisingular stratum at 

{fro = 0} in the space of hypersurfaces of degree m in CP n- l  . Various sufficient 

criteria for the smoothness of equisingular families of hypersurfaces of a given 

degree and examples of non-smooth equisingular families can be found in [11, 

12, 13, 7, 8, 21, 22]. In this case, the blow-up versality of a fixed-equimultiple 

deformation F means that  the induced deformation of m-forms Fm is a joint 

versal deformation of the singularities of the hypersurface {fk = 0} in CP n-1 . 

1.2 BASES OF THE LOCAL RING. In a similar way we study critical points of 

holomorphic germs and singular points of hypersurfaces. 

Consider a holomorphic germ f : (C ~, O) -+ (C, 0) and a hypersurface germ 

W = {f  = 0}, where f(x) = ~ amX m in some coordinates x l , . . . ,  xn. The local 

ring of the critical point is Q(f) = Oc- ,0 / J ( f ) ,  whereas the local ring of the 

singular point is S(f)  = Oc~ ,o/I(f), where 

0$,  
J ( f )= /O-~xi  l < i < n ) ,  I ( f ) =  l f  , Of l < i < n ) .  

Oxi ' 

If f is a quasihomogeneous germ, then S(f)  = Q(f)  ([1], Ch. II, sec. 12). 

1.2.1 Special bases of the local ring. Here we prove the existence of a basis of 
the local ring satisfying certain restrictions on the degrees of its monomials. 

Representatives e l , . . . ,  e u of a basis of the local ring give the versal deforma- 

tion: F(x, A) = f(x)  + Y~=I Aiei. We assume that  the Newton diagram of f ,  F, 

intersects coordinate axes in Z~_ at points {(0 , . . . ,  0,1i, 0 , . . . ,  0), i = 1 , . . . ,  n}. 

Consider the following parallelepiped in Z~: 

II = {k e Z~I 0_< ki < ( l i -  1), i = 1 , . . . , n } .  
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PROPOSITION 2: If  f is a Newton non-degenerate germ, then there exists a basis 

of  the local ring Q( f )  such that all its monomials lie in II 

Proof: If the function germ is of the form alx~ 1 + . . .  + a~x~ ~, then the Jacobian 

ideal is generated by monomials _h-1 _1,-1 and all monomials from H are ~1  , " " " , ~ n  , 

in the monomial basis of the local ring. 

Consider now the germ f t .  The Jacobian ideal J ( f r )  is generated by 

Ofr _ a " h-1 
Ox~ iLix i d- monomials from l=i, i -- 1 , . . . ,  n, 

where 1=[ -- {k E Z_~: 0 < ki _< (li - 1), i -- 1 , . . . ,  n} is the closure of H. Thus we 

get 
l i - - 1  x i - a sum of monomials from l=i mod J ( f r ) ,  i -- 1 , . . . , n .  

From the convexity of F, it follows that 

(4) xZi ~-1-- a s u m o f m o n o m i a l s f r o m H  m o d J ( f r ) ,  i = l , . . . , n .  

Indeed, the worst case is when f r  is a homogeneous polynomial of the form (for 
simplicity, we write down a polynomial in two variables) a x  I - t - ~ x l - l y ÷ ' y y l - l x +  

6y I + -'-, such that  the coefficients a,/~, % 6 satisfy the condition a6l 2 = ~/~. In 

this case we cannot replace x 1-1 by a sum of monomials from H. But it is easy 

to see that almost all linear changes of variables and almost all perturbations of 

the coefficients destroy this condition. 
Thus the set of all monomials from the right sides of the last congruences 

includes (or coincides with) all monomials from a basis of the local ring of f t .  

In the general case, we use the following result ([1], Ch. II. sec. 12): 

I] f is Newton non-degenerate, then it is smoothly equivalent to f r  + ~ ciei, 

where {ei} are the monomials of a basis of Q( f r )  which lie above F. 

If we choose monomial representatives of a basis for Q(fr)  which lie strictly 

in l-I, then all monomials {e~} turn out to be in H too, and hence for f the same 

congruences as in (2) hold. This completes the proof of the proposition. | 

1.2.2 Generic bases of the local rings. Here we prove some restrictions on any 

basis of the local ring of a Newton non-degenerate singular point. 

PROPOSITION 3: I f  f is Newton non-degenerate germ, f r  contains monomials 
h ~ i = 1, ., n, and h is a minimal number such that x ,  E I ( f ) ,  then X i , . .  

h ~ In I n - 2  (~1 + ' " +  ~n) l  +1 .  
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Proof: In the "worst" case, when f = f r  is a quasihomogeneous germ with 
weights {1//i, i = 1 , . . . ,  n}, the maximal possible quasi-degree in a basis of the 

local ring is ~-~(li - 2)/li. Indeed, the number of the monomials in a (monomial) 

basis of the local ring which have a given quasi-degree, is the same for any bases 

([1], Ch. II, sec. 12), and for the germ ~ x ~  ~, all Inonomials with quasi-degree 

bigger than ~--~(li - 2)/l~ lie in the Jacobian ideal (see the beginning of the proof 

of Proposition 1). The equation of the hyperplane through the points which 

correspond to the monomials x~', i = 1 , . . . ,  n is 

kl kn 
~1 + '"+-~--n  = 1 ;  

here k l , . . . ,  k,~ are coordinates in the lattice Z~. The equation of the parallel 

hyperplane through the point (11 - 2 , . . . ,  l,~ - 2) is 

kl k,~ I1 - 2 In - 2 
+ " " + - + + I----i-- 

The hyperplane intersects axis kn at the point 

k n = l n [ n - 2 ( ~ + . . - + ~ ) ] .  

This is the maximal possible power of x= (if it is integral) that can be not in 

I ( f ) .  | 

1.2.3 Boundary singularities ease. Consider the E-boundary function germ 

(f, E). Choose local coordinates Xl , . . . ,  xm such that  the boundary is x~ = 0. 

We denote by fo the restriction of f to the boundary: 

f 0 ( z l , . . . ,  z ~ - l )  = f ( x l , . . . ,  xn-1, 0). 

The germ (f, E) is an isolated boundary singularity if both the germs f and f0 

are isolated singularities (without boundary conditions). The Newton diagram 

F(f0) of fo is the intersection of F(f)  with the coordinate hyperplane k~ = 0 in 
Z~_. If F( f )  has a point at any coordinate axis, then the same holds for F(f0). If 
f is a Newton non-degenerate germ, then f0 is a Newton non-degenerate as well. 

The local ring of the boundary germ (f, E) is ([19]) 

( O f  Of ) 
Q(f IE)  = OK,, ,o/J(f ,E),  J ( f lE )  = -o-X-Xl' ,x,~ Of 

. . . ~ O X n _  1 ~ " 

For a germ of a hypersurface with boundary, the local ring is 

S ( f l E  ) = O~,, ,o/I(flE),  I ( I[E)  = ( f ,  Of Of ,Xn Of ~ 
O x l ' " "  Ox,~_l Oxn/" \ 
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Note that if f is a quasi-homogeneous germ, then fo is a quasi-homogeneous 
as well (to get the Euler equality for f0, it is enough to substitute xn = 0 in 

the Euler equality for f and to notice that Of/Oxilx~=o = Ofo/OXi, i ~ n). 

Moreover, it is clear that in this case I ( f [E)  = J( f[E) .  

There exists the following exact sequence of the local rings of the function 

germs f ,  f0 and (f, E) [19]: 

0 -~ Q( f )  -+ Q(f ,  E) -~ Q(fo) -+ o; 

here Q(f )  ~ Q(f ,  E)  is the multiplication by xn, and Q(f,  E)  -+ Q(fo) is the 
natural projection. In particular, if {ei, 1 < i < p} and {e °, 1 _< j < / to}  are 

representatives of bases of local rings of germs f and fo respectively, then the set 

{xnei, e °, 1 < i < # ,  l _ < j < _ # o )  

represents a basis of the local ring of the boundary singularity (f, E).  

Under the above assumptions on germ f ,  we get the following result for the 
boundary germ (f, E).  

COROLLARY 1: (i) If  ( f ,  E)  is a Newton non-degenerate boundary germ, then 

there exists a basis of the local ring such that all its monomials lie in the 

parallelepiped 

I I o = { ( k l , . . . , k n ) : l < _ k i < _ l i - 2 ,  l < i < n - 1 ,  l <_ kn <_ l,~ - l}.  

h (ii) If  xn = 0 is the boundary, then the minimal h such that x n E I ( f ]E)  

satisfies 

The beginning of the classification (up to the stable equivalence) of the 
boundary singularities consists of the following series of germs (the boundary 

E = {x = 0}): 

Bk: f = x k + y2; Ck: f = xy + yk; F2k: f = yk + x 2. 

For these series in the case n = 2, the minimal h such that x h E I ( f l E  ) is 

Bk: h=k;  Ck: h=2;  F~k: h=3 .  
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2. B U V  d e f o r m a t i o n s  o f  a lgeb ra i c  h y p e r s u r f a c e s  o f  f ixed  d e g r e e  

In this section we give numerical criteria for the spaces of hypersurfaces of a 

given degree to be BUV deformations for one or a few NDT singular points. 

In section 2.1 we give a general criterion for a simultaneous BUV deformation 

of several NDT points. In section 2.2 we give a general criterion for a BUV 

deformation of one N e w t o n  n o n d e g e n e r a t e  a long  t a n g e n t s  (briefly, NNDT) 

singular point. In the latter criterion the degree d' of the hypersurfaces realizing 

BUV deformation can be bigger than the degree d of the initial hypersurface. We 

show that  d' = d under some additional conditions; in section 2.2 this is done 

for a special class of NNDT singular points. In section 2.3 we show that d' = d 

for an arbitrary NNDT singular point but for a restricted class of deformations, 

so-called lower deformations. In particular, Theorem 4 generalizes Theorem III.2 

[4], where only the existence of non-singular lower equimultiple deformations is 

proven. 

2.1 BUV DEFORMATION OF SEVERAL N D T  SINGULAR POINTS. Let F C 

CP n be a hypersurface of degree d with NDT singular points z l , . . . ,  z,~ as its 

only singularities. 

THEOREM i: / f  

~-~ deg Xz~ at < 4d - 4, 
i=1 

then the germ at F of  the linear system [Ocp.(d)l induces a joint B U V  

deformation of  the singular points zl . . . .  , zm of  F. 

Proof: Since X ndt., C X ~ ,  1 < i < m, the required statement can be derived in 

the same way as Theorems 1 and 2 [22] (see also [8]). | 

In the case n = 2 we can say more. 

THEOREM 2: In the previous notation, let n = 2. Then the germ at F of  the 

linear system ]Ocp2 (d)[ induces a joint B U V  deformation of  the singular points 

z l , . . . ,  Zm o f F ,  provided one of  the following conditions is satisfied: 
m e X ndt (i) y~.i=l(d g ,, - i sodz,( f lxr / t /cp=,OF))  < 4(d - 1), where 

isod,(f lx2/ , /ce=,  OF), defined as in [10], section 3, a/ways is a nonnegative inte- 

g'er, o r  

(ii) F is irreducible and 

m 

ndt Z ~/(F,X~, ) < (d + 3) z, 
i=1 
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where 7 (F ,Y)  defined as in [12], section 2.1, satisfies 7 ( F , Y )  <_ (degY + 1) 2 

([12], Lemma 2.2). 

This follows from [12], Proposition 2.1, [10], Corollary 3.9. 

2.2 BUV DEFORMATION OF ONE N N D T  SINGULAR POINT. Consider a holo- 

morphic function germ f at the origin of C". In coordinates x l , . . . ,  x,~ we write 

f ( x )  = )-~a,~x "~, where m = ( m l , . . .  ,ran) and x m = x ~ l . . . x ~  ~. Let F be the 

Newton diagram of f ;  denote by f r  the main part of f :  

fF = E amxm" 
reEF 

We say that  f is N e w t o n  n o n - d e g e n e r a t e ,  if f r  has an isolated critical point 

at the origin, any coordinate axis in Z~_ contains a point of F, and the truncations 

f~ to the facets a of F (i.e., the sums of monomials in f ,  corresponding to the 

integral points in a) have no critical points in (C*) n. 

Let F C C P  '~ be an algebraic hypersurface. Denote by r :  E -+ CP"  the 

blowing-up of z. Let F* be the proper transform of F,  E be the exceptional 

divisor, Z l , . . . ,  zk be all the singular points of F* O E. An NDT singular point 

x E F is called N e w t o n  n o n d e g e n e r a t e  a long  t a n g e n t s  (briefly, N N D T )  if 

each point zi, 1 < i < k, is Newton non-degenerate with respect to some local 

coordinates X l , . . . ,  x ,  such that  E = {xn = 0}, L *  = {xl . . . . .  Xn--1 = 0}. 

Let z be an NNDT singular point of multiplicity m of an algebraic hypersurface 

F C C P  n of degree d. Let X C C P  n be a zero-dimensional scheme concentrated 

at z and defined by the m-th power of the maximal ideal m m C O c p , , z ,  and let 

f f x / c p ,  be the ideal sheaf of X on C P  n . Introduce the zero-dimensional schemes 

~ * x e ~ F  * O E )  C E and Y = X e~ U . " U  X e~ X '  = X~I ( F  N E )  U . . .  U zk , - -  zlI E zkl E C E 

defined as in sections 1.1.2 and 1.1.4. Denote h(z)  = min{k C Z: k E  D Y } .  

THEOREM 3: In the above notation,  p u t  d' = max{d, r + h(z)  - 1}. 

(i) I f  n = 2, then the germ at F o f  the  linear s y s t e m  IJX/CPn (d')[ induces a 

f ixed B U V  deformation o f  z. 

(ii) I f  n > 2 and 

(6) H i ( E ,  f f  x , / E ( r )  ) = O, 

then the germ at F o f  the linear system I J x / c p .  (d')t is a fixed B U V  deformat ion 

o f  z. 

Proof: First, we notice that the first part of Theorem 3 follows from the second 

one. Indeed, for n 2, the scheme ea,o * = Xzi (F ME), l _ < j _ <  k, on the line E is 
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defined by the ideal (mz~) ms-1 C OE,zj, where mj is the intersection multiplicity 

of E and F*, which immediately implies (6), since ml + " • + m k  < r. 

The fixed-BU-versality of the linear system IJx,cP" (d')l means that the map 

H° ( CP '~, J x  /cp.  ( d') ) --+ H° ( X~ de'°, O x?dt.o ) is surjective, which is equivalent 

to the surjectivity of the map H°(E,  O~(d'L - rE)) --+ H°(Y, Oy), where L is 

the strict transform of a generic hyperplane in CP"  , and the latter surjectivity 

is equivalent to 

(7) Hi (E ,  J y / ~  ® O2(d'L - rE)) = O. 

To establish (7), we apply the so-called "Horace's method" [14]. Introduce the 

zero-dimensional schemes 

Y0=Y,  Z~ = Yi_I OE,  Y ~ = Y ~ - I : E ,  i =  l , . . . , h ( z ) ,  

where Y/-1 : E denotes the residue scheme defined at each point z by the ideal 

{T C O~,z: E ~  C I}, I is the ideal of (Y/-1)z. We have the following exact 

sequences: 

0 -+ J y , / E  ® O E ( d ' L  - (r + i ) E )  -+ J y . _ , / E  ® O E ( d ' L  - (r + i - 1)E) 
- + J Z ~ / E Q O E ( r + i - - 1 ) - + O ,  i = l  . . . .  ,h(z),  

that produce cohomology sequences, from which we can subsequently derive (7), 

provided 

(8) Hi(E ,  JZ,/E ® OE(r + i -- 1)) = 0, i = 1, . . . .  h(z), 

(9) H i (E ,  JY,(;)/E ® O2( d'l, - (7" + h(z) )E) ) = O. 

Note that Yh(z) = ~ by definition of h(z), and d' >_ r + h(z) - 1 by definition 

of d', which immediately implies (9). On the other hand, Z1 = Y N E = X' ,  

Z1 D Z2 D "'" D Zh(z), which implies (8) in virtue of (6). | 

Estimates for h(z) can be found in section 1.2.3 (see, for example, (5) for 

generic NNDT singular points). In particular, the computation in section 1.2.3 

implies 

COROLLARY 2: The statement of Theorem 3 holds for n = 2 and d' = d, provided 

that all the boundary singular points Zl , . . . ,  Zk Of F* (with respect to E) are of 

types Bk, F2k, or Ck. 
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Example  2: Let f ( x l , . . . , x n )  = f m ( X l , . . . , x n )  + f m + r ( x l , . . . , x n ) ,  where fm 

and f,n+~ are nonzero homogeneous polynomials of degrees m and m + r, respec- 

tively. Assume that  n = 2, or n = 3 and the hypersurface {fro = O) C CP  n-1 

has only isolated singular points. Suppose also that  fm+~ is generic. We claim 

that  this singular point is NDT, and it satisfies the conditions of Theorem 3 with 

d' -- m + r. Namely, in the notation of Theorem 3, it is sufficient to show that  

h _ r. Without loss of generality, suppose that  z~ C Sing({/k = 0}) C CP  "-1  

has coordinates ( 0 , . . . ,  0, 1). Representing the blow-up ~r: Y -+ CP  '~ locally as 

the coordinate change 

Yl = X l X n ~  • •. ~ Yn-1 - :  X n - l X n ,  Yn -~ Xn, 

we obtain an equation of the strict transform of the hypersurface {f  -- 0} in a 

neighborhood of Zl in the form 

g (y l , . . . , yn )  = g0(y l , . . . , yn-1)  + y , % ( y l , . . . , y n - 1 )  = 0, gl(0) # 0, 

where E = {yn = 0}, and go -- 0 is an equation of the hypersurface {f,~ -- 0} C E 

in a neighborhood of zl. By (1) the ideal of the scheme x~alE contains an element 

Og --_ ryrg t (y l ,  " Yn-1), rgl(O) • O, Yn Oy---~ " "  

?" e a  thus contains an element y~, or, in other words, E r D XzllE.  

At last, we notice that ,  for n >_ 3, one should also verify condition (6), which 

means, in fact, that  the space of hypersurfaces of degree m in CP  n-1 induces a 

joint versal deformation of all singular points of the hypersurface {fro = 0} C 
(2pn-1. 

2.3 BUV DEFORMATION OF AN N N D T  SINGULAR POINT. We star t  with an 

adoption of the definition of a lower deformation from [21] to the case of NNDT 

singular points. 

2.3.1 One-parametric deformations of singularities and their models. Let 

F:  (C ~, O) -+ (C, 0) be an isolated boundary singular point with respect to a 

hyperplane L = {xn = 0}, and let B be a sufficiently small closed ball centered 

at z = 0 E C n such that  V0 -- ( F  = 0 } N B  and Wo = V o N L  are compact 

varieties with an isolated singular point z and the boundaries aVo = Vo N aB,  

OWo -- OVo N L, and, in addition, V0 (resp., W0) is transversal to OB along OVo 

(resp., OWo) and is homeomorphic to a cone over OVo (resp., OWo). 

Under a one-parametric deformation of the boundary singular point z E Vo we 

mean an analytic hypersurface V C B × De, D~ = {t E C: Itl < e}, such that  
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• (Trlv)-l(0) ---- V0, where 7r: B x De -+ D6 is the projection, 

• for t 5£ 0, (Tr]v)-i(t) :-- Vt and Wt = Vt N i are compact varieties in B 

with isolated singularities in Int(B) and boundaries 0Vt c OB, OWt COB, 

so that Vt, Wt are transversal to OB along 0Vt, OWe, respectively. 

For any equivalence of singular points, there is the corresponding equiva- 

lence of boundary singular points defined by keeping the boundary (see, for 

instance, section 1.2.3). For both of them, we use the same notation. Given 

an equivalence S of hypersurface isolated singular points, usual and boundary, 

we say that a deformation Vt, t E De, of the singular point z is S-compatible 

if, for any ti,t2 E D~\{0}, there exist bijections Sing(Vt,) <-+ Sing(Vt2) and 

Sing(Wt~) <-~ Sing(Wt2) such that  the corresponding points in Sing(Vtt ) \L  and 

Sing(Vt2)\L are S-equivalent as usual singular points, the corresponding points 

in Sing(Wtl ) and Sing(Wt2) are S-equivalent as boundary singularities of Vtl, Vt2 

with respect to L. 

Let D C C ~ be homeomorphic to a closed 2n-ball, and Y C D be a topological 

(2n - 2)-manifold with boundary OY = Y A OD. Assume that Cl(Y)\Y* is a 

finite set in Int(D), and in a neighborhood of any point z E CI(Y)\Y, the set 

Cl(Y) is a complex (n - 1)-manifold with isolated singularity at z. 

In the above notation, the pair (D, Y) is said to be a model for an S-compatible 

deformation Ft, t E De, of the singular point z of F if, for any t 7 ~ 0, there exists 

a homeomorphism (B, {Ft = 0}) -+ (B(Ro), Y) which takes L M B to L Cl D, 

Sing(Ft) to Sing(Y) and Sing(FtlL ) to Sing(Y N L) so that the corresponding 

singular points in Sing(Ft)\L and Sing(Y)\L are S-equivalent as usual singular- 

ities, the corresponding points in Sing(Ftli) and Sing(Y A L) are S-equivalent as 

L-boundary singularities of (Ft, Y). 
Next we formulate a criterion for the existence of one-parametric deformations 

of NNDT singular points with given models. An important requirement for 

models will be S-transversality, which we define later in accordance with the 

similar notion in [21], section 3. 

2.3.2 BUY deformations of an NNDT singular point with given models. Let z 

be an NNDT singular point of multiplicity r of an algebraic hypersurface F C 

CP ~ of degree d. Let F* be the proper transform of F under the blowing-up 

~r: E --+ CP'* of the point z, E be the exceptional divisor, z l , . . . ,  zk be all the 

singular points of F* M E. Any point zs, 1 < s _< k, is Newton nondegenerate 

with respect to suitable local coordinates X l , . . . , x n  in which zs = (0 , . . . , 0 ) ,  

E = {x,~ = 0}, and F* is given by a polynomial equation Fs(xl, . . . ,x,~) = O. 

* CI(Y) denotes the closure in the metric topology. 
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Here we assume that the truncations of F8 of the facets of the Newton diagram 

F(Fs) are nondegenerate. Introduce the ideals 

Is=Iz~'E+{ ~ Aixi}cO2,z~ 
IEA(F~)\F(F~) 

and the zero-dimensional schemes X8 defined by them for all s = 1 , . . . ,  k. 

THEOREM 4: [n the above notation, let (D (i), y(i)), i = 1, . . . ,  k, be S-transversal 

models for S-compatible deformations of the points z l , . . . ,  zk, respectively. 

(i) If n = 2 then there exists a one-parametric fixed equimultiple deformation 

Ft, F0 -- F,  deg F, = d, of the singular point z o fF  such that the family of proper 

transforms F; realizes an S-compatible deformation of the points zl , .  . . ,  zk with 

the given models (D (0, Y(~)), i = 1 , . . . ,  k. 

(ii) If n > 2 and 

(10) HI(E, J(Xlo...uX,)nE/E ® OE(r)) = O, 

then there exists a one-parametric fixed equimultiple deformation Ft, Fo = F, 

deg F, = d, of the singular point z o fF  such that the family of proper transforms 

F~* realizes an S-compatible deformation of the points z l , . . . ,  Zk with the given 

models (D (i), y(i)),  i = 1 , . . . ,  k. 

Remark 2: If n = 2, then any model (D, Y) which has ordinary nodes as its 

only singularities is S-transversal by Corollary 2 [21]. 

2.3.3 S-transversal models for deformations of semiquasihomogeneous boundary 
singular points. In the above notation, let the origin in C" be a semiquasihomo- 

geneous L-boundary singular point with the main face a of the Newton diagram 

of F,  i.e., the truncations F ~ and FaIL (the sums of monomials in F,  F[L cor- 

responding to the integral points in a) have no critical points in Cn\{0}, L\{0}, 

respectively. Introduce the space of polynomials 

l(~)>0 

where l ( i1 , . . . ,  i,,) is a linear function, vanishing on a and positive at the origin. 

Let a polynomial P C P (a )  with p a  = F a define a hypersurface W = 

{P = 0} c C n having only isolated singular points. There is R0 > 0 such that 

any sphere SR of radius R < R0 centered at the origin intersects W transver- 

sally. Denote by D C C ~ the closed ball of radius R0 centered at the origin, and 



Vol. 125, 2001 EQUIMULTIPLE DEFORMATIONS OF ISOLATED SINGULARITIES 311 

consider the pair (D, Y), where Y = W n B(R0), as a model for an S-compatible 

deformation of the singular point z of F.  

Given an integer lo > Inax{il + . . .  + in: l ( i l , . . . , i n )  _> 0}, we consider P,  

7)(a), "P(a,F) to be included in the space P(lo) of polynomials of degree _< 10. 

For any singular point w of W A B 2n, introduce the germ Md(W, P) at P of 

the set of polynomials in P(d),  the space of polynomials of degree d, which are 

close to P and have a singular point S-equivalent to (W, w) in a neighborhood of 

w. We say that a model (D, Y) for deformations of the semiquasihomogeneous 

singular point z E W satisfies the S-transversality (resp., strong S-transversality) 

condition if there exists a sufficiently large integer d such that 

• the intersection Md(P) of the germs Md(W,P), w E Sing(W n B2n), is 

smooth, and 

• Md(P) intersects with P(a) (resp., P(a ,  F))  in P(d) transversally. 

2.3.4 S-transversal models for deformations of Newton nondegenerate bound- 
ary singular points. Now let the origin in C n be a Newton nondegenerate L- 

boundary singular point with the Newton diagram F(F)  of a polynomial of F,  

i.e., the truncations F ~ and F ~ IL (the sums of monomials in F,  FIL correspond- 

ing to the integral points in a) to the facets a of F(F)  have no critical points in 

C ~ \{0),  n\{0},  respectively. 

Denote by K(F (F ) )  the bounded closed domain in the nonnegative orthant 

~R~_ = {(x~ . . . .  ,x,~) : x~,... ,x~ >_ 0} bounded by F(F)  and the coordinate 

hyperplanes. Let us be given 

• a subdivision of K ( F ( F ) )  into convex lattice polyhedra A 1 , . . . , A N  

and a convex piece-wise linear real-vMued function v on R_~ such that 

A I , . . .  , A N ,  A(F)  are its linearity d o m a i n s ,  //IA(F) : 0, 

• a set of numbers {Ai: i E (K(r(F))\F(F)) n Z~} such that, for any Ak 

and any proper face a C Ak, the polynomial F~(x)  = ~ i e ~  Aixl has no 

singular points in (C*)~. 

Here we assume that  the coefficients Ai, i C F(F) ,  are those of the polynomial F,  

and that all the polynomials Fk(x) = ~ i e a k  Akxk and Fk IL define hypersurfaces 

in (C*)n respectively in (C*)n-1 C L, with isolated singular points only. 

The following construction has been introduced in [15]. For any k = 1 , . . . ,  N 

we have the moment map of the positive orthant R~_ into the polyhedron A k 

- i - x  ( u ( 1 ) ( x ) , . .  , (n) 
= - . , - k  ( x ) ) ,  ~ icAk x~ 

which is a diffeomorphism of R~_ onto Int(&k) (see [2, 3]). We introduce the 
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complexification of the polyhedron A k 

CAk = { ( w l , . . . , w , )  e C": e 

and the complexification of the moment map 

(c*)"  -+ CAk,  = 

Wl Wn 
X = ( I w l h . . . ,  Iwn l ) ,  ~ 1 -  iw l l , . . . ,Vn  = Iwnl' 

which is a diffeomorphism of (C*) n onto I n t ( E A k ) n  (C*) n. By the 

(complex) chart Ch(Fk) of the polynomial Fk we call the closure of the set 

C#k({Fk = 0} n (C*)"). 

PROPOSITION 4: (i) The set CK(F(F))  = CA1 U ..- U CAN is homeomorphic 

to a dosed ball B 2n. The set W = Ch(FI) U- . -  U Ch(FN) is a (topological) 

(2n - 2)-manifold with the boundary W n O(CK(Y(F) ) ) and the finite singular 

locus Sing(W) -- C#1 (Sing(F1)) U- . .  U C#N (Sing(FN)). 

(ii) Let {F = 0} intersect the boundary of a closed ball B 2n centered at the 
origin transversally, and {F = 0} n B 2n be a cone over {F = 0} N 0(B2n). Let 

functions Ai(t), t > O, with Ai(0) = Ai, i E Z~_, be such that, for a sufficiently 

small t > O, there is a bijection between the singular point set of the hypersurface 

_~(x) = ~ .41(t)xlt ~(1) = 0 in Int(B 2'~) and the disjoint union Sing(F1, . . . ,  FN) of 

the sets Sing(F1)n(C* )n , . . . ,  Sing(FN)N(C* )n, so that the corresponding singular 

points are S-equivalent. Then there exists a homeomorphism of (B 2n, {/~ = 0} n 
B 2n) onto (CK(F(F)),  W) which extends the above bijection Sing(F) n B 2n ++ 

Sing(F1, . . . ,  Fly). 

If all the data are defined over the reals and Sing(F1, . . . ,  FN) -~ ~, the state- 
ment of Proposition 4 for the real parts of CK(F(F)) ,  W, B 2~ and {F -- 0} is 
a particular case of Viro's theorem [24]. In fact, the proof of Viro's theorem [24] 

provides the same claim with Sing(F1, . . . ,  IN)  ~ 0. In full generality Proposition 

4 is proven in [15] in a similar way. 

We consider the pair (D, Y) -- (CK(F(F)),  W) as a model for an S-compatible 

deformation of the singular point z of F.  

We shall define the S-transversality for the above model (D, Y) in accordance 

with [21], section 3. 

Let G be the dual graph of the subdivision R~_ = A(F) U A1 U ..- U AN: 

namely, its vertices are incident to A(F),  A1 , . . . ,  AN, and its arcs are incident 

to common facets of these polyhedra. Define G to be the set of oriented graphs 

with support G, without oriented cycles, and such that  no arc goes out of the 
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vertex corresponding to A(F).  It is clear that G ~ 0. For any G e G we denote 

by Ai,+(G) the union of facets of Ai, which correspond to the arcs of G coming 

in Ai, i = 1 , . . . , N .  

For a polynomial Fi(x) and l > degFi denote by M~(Fi) the germ at 

Fi of the set of polynomials of degree <_ 1 which, in a neighborhood of 

Sing(F/) A (C*)'~, define singular points S-equivalent to the corresponding singu- 

lar points of {Fi = 0}, and in a neighborhood of Sing(FilL)n (C*) n-1 C L define 
L-boundary singular points S-equivalent to the corresponding singular points of 

{F~ = 0}. The triple (A~, A~,+(G), Fi) is called S-transversal if 

* Ml(Fi) is smooth for sufficiently large l, 

• if n _ 3, then Ml(Fi) (l > >  0) intersects transversally with the set of 

polynomials with Newton polyhedron Ai having the same coefficients at i E 

Ai,+(G) as Fi; if n = 2, then Ml(Fi) (l > >  0) intersects transversally with 

the set of polynomials with Newton polyhedron Ai, whose truncation on 

any connected component of A~,+ (G) is proportional to the corresponding 

truncation of Fi. 
The model (CK(r(F)), w )  is called S-transversal if there exists a graph G E G 

such that all the triples (Ai, Ai,+(G), Fi), i = 1 , . . . ,  N, are S-transversal. 

Remark 3: In contradiction to the case n = 2, for n _> 3, we do not know 

reasonable general S-transversality criteria, even for nodal models (cf. Remark 

2), and any particular case requires a special consideration. We illustrate this in 

the following example. 

Example 3: In the above notation, suppose that, for i -- 1 , . . . ,  N, 

* the hypersurface {Fi = 0} is nonsingular in (C*) n, if the set Ai\Ai,+(G) 
contains no integral points, 

• the hypersurface {Fi = 0} has a node as its only singularity in (C*) n, if the 
set Ai\A~,+(G) contains an integral point. 

Then the corresponding model (CK(F(F)) ,  W) is S-transversal. For, one has to 

show that  any triple (Ai, Ai,+ (G), Fi) with Z"NAi\A~,+ (G) ¢ 0 is S-transversal. 

Let z C (C*)" be the node of {Fi = 0}. Then the tangent space at Fi to 

Ml(Fi) consists of polynomials vanishing at z. On the other hand, the space 

7~(Ai, A~,+(G),Fi) contains the family Fi + Ax i, ~ e C, where i is an integral 

point in Ai\Ai,+(G), and this family is transverse to Tfi(Mt(Fi)), because x i 

does not vanish at z. 

2.3.5 Proof of Theorem 4. As in the proof of Theorem 1 [21], the existence of 

the required one-parametric deformation Ft* follows from the S-transversality of 
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the models (B (i), Y(i)), i = 1 , . . . ,  k, and the condition 

(11) H i (  ~, JX ,  u...uxk/n ® O~( dL - rE))  = O, 

where /, C ~ is the preimage of a generic hyperplane in CP  n (note that  F* E 

[dL - rEI). For any s = 1 , . . . ,  k, the ideal Is defining X8 contains the ideal 

{~-~ls(1)<0Aixi}, which in turn contains the germ of (d - r + 1)E. Then we 

can complete the proof along the argument in the proof of Theorem 3, provided 

(1) holds for n _> 2. The latter ought to be verified only for n = 2. Indeed, 

in this case the scheme Xs, 1 < s < k, on the line E is defined by the ideal 

m "Ires - 1  C OE,zs where ms is the intersection multiplicity of E and F*, which 
" * * Z  s ] 

immediately implies (1), since ml  + - ' -  + m k  _< r. 
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